Boiler Tube Scale Deposit Measurement Program

Valmet Inc., Energy and Environmental (ENE)
North America
Mike Ward
Industry Strategies for Cleaning Boilers

- Chemical clean boilers on a regular interval
 - Example; every 5 - 10 years
 - Excessive or unnecessary cleaning can cause tube damage

- Remove sample tubes for DWD analysis and chemically clean based on analysis
 - Annual
 - Other interval

- Maintain strict water chemistry controls
 - A delay of one or two years on a dirty boiler can result in major tube damage.

- Type of Boiler (RB vs PB) and use

- Clean following major upgrade or rebuild as required (10% or more replacement)
Factors Affecting A Successful Strategy

- **Water chemistry incidents between cleaning intervals**
 - Major or several small incidents
 - Do your incident corrective actions include a tube sample at next opportunity?

- **Water chemistry controls**
 - Condensate return fouling
 - Makeup water contamination

- **Change in treatment strategy**
 - Coordinated PO4 to All-volatile

- **Change in fuels or burner design**
 - Coal to gas conversion, changes high heat zone

- **If chemical cleaning is improperly performed, it can result in**
 - Excessive cleaning time
 - Tube wall thinning

- **Insufficient cleaning can lead to**
 - Possible corrosion damage
 - Loss of heat transfer.
The standard DWD test should not only provide a deposit loading but also an analysis of chemical composition of the deposit on the tube.

Optimally, the tube sample for DWD should be from the highest heat flux area and/or low flow area of the boiler.

The change in the weight of the tube divided by the water-touched area where the deposit was removed produces the DWD result (g/ft²).

What are the best practices for determining correct tube sample location?

Threshold ~ 25-30 g/ft²
Deposition Effect on Efficiency & Operating Costs

8000 operating hours

- Annual Operating Costs Increase due to high iron deposit layer measuring 0.1 mm.
- 0.1 mm = 3.9 mils ~ 25 g/ft² (threshold)
- ~ 0.5% Energy Loss
- 1000 MMBTU/Hr Heat Input
- Fuel cost = $2.50/MMBTU
- = $100,000 per year (additional)
- An indirect indicator of scale or deposit formation is flue gas temperature. If the flue gas temperature rises (with boiler load and excess air held constant), the effect is possibly due to the presence of scale.

Source: National Institute of Standards and Technology
Boiler Tube Scale Deposit Measurement

Equipment

- **Hardware and Software System:**
 - Package combining the advanced UT hardware and software package developed to measure and record thicknesses of the internal deposit layer and remaining tube wall in waterwall tubing.

- **Equipment Operates Using Ultrasonic Testing (UT) Technology**
 - The tube thickness and deposit layer can be accurately measured by measuring the change in wave forms through the material
 - Requires cleaned smooth inspection surface
 - Minimum detectable scale capability less than ~1 mil
Inspection Technique

Preparation

• Transducer probes are prepared beforehand using the inspection tube size as a reference. The probe needs to be profiled to match the tube.

• Boiler tubes are prepared by cleaning an area of 1x1 inch near the crown area in a way which does not damage the metal surface itself.

• A wire wheel and buffing pad may be used to polish the surface without removing any base metal.
Inspection Technique

Wave form measurement

- Scale thickness measurement is based on reflection of longitudinal ultrasonic waves from different interfaces.
- Sound is reflected from both metal/deposit and deposit/water/air interfaces.
- Deposit thickness can be calculated directly from the distance of separate waves reflected from different interfaces and from sound propagation speed in the scale.
Inspection Technique
Wave form measurement

- With a deposit the waves reflected from the deposit and water/air interface widen noticeably. The waves are combined (B1+D1).
- B1+D1 is gain adjusted and compared to the known metal material wave.
- The change in wave width (Dt) is the scale thickness.
- Calibration is by checking the zero point from a scale free tube. If a tube sample containing scale is available, the measurement can be fine tuned.
Factors Affecting Accuracy

Deposit voids would attenuate the sound transmission and in the larger quantities provide “false” UT interface.

Ripples in deposit would significantly increase the measured thickness value or decrease it (in the case of the “reversed ripples”)

Cracks would provide a “false” UT interface

Exfoliation, in places, would prevent any readings

Riffled tubes (floor tubes) cannot accurately be measured
Deposit Indication

NO DEPOSIT

0.2826in
0.2mil
Deposit Indication

THIN DEPOSIT

0.2866in
1.3mil
Deposit Indication

THICK DEPOSIT

0.2882 in
5.4 mil
Correlation to DWD

Quality comparison made with tube sample and DWD analysis.

Deposit distribution is averaged for the full hot side. A factor is used to change the thickest point into an average hot side deposit.

Ex: 120/100 µm = 1.2

A weighted average density from known deposit analysis is used to accurately draw a correlation from scale thickness to DWD.

In this case; a deposit thickness of 4 mils correlates to ~ 33 g/ft² DWD.
Analytical Report

Deposit Weight Determination

Sample - As Received

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Received Tube Section</td>
<td>25.0 in</td>
</tr>
<tr>
<td>Outside Diameter of Tube Section</td>
<td>3.0 in</td>
</tr>
<tr>
<td>Identifying Feature</td>
<td></td>
</tr>
<tr>
<td>Hot and Cold sides indicated</td>
<td></td>
</tr>
</tbody>
</table>

Results From Hot Side

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area Examined</td>
<td>12.3 in²</td>
</tr>
<tr>
<td>Wall Thickness (Minimum Measured)</td>
<td>0.271 in</td>
</tr>
<tr>
<td>Wall Thickness (Maximum Measured)</td>
<td>0.280 in</td>
</tr>
<tr>
<td>Deepest Penetration</td>
<td>4 mils</td>
</tr>
<tr>
<td>Deposit Loading</td>
<td>32 g/ft²</td>
</tr>
</tbody>
</table>

Note: Weld overlay all the tube's length - Minimum and Maximum wall thickness may be not accurate because of the weld.

Results From Cold Side

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area Examined</td>
<td>6.8 in²</td>
</tr>
<tr>
<td>Wall Thickness (Minimum Measured)</td>
<td>0.274 in</td>
</tr>
<tr>
<td>Wall Thickness (Maximum Measured)</td>
<td>0.279 in</td>
</tr>
<tr>
<td>Deepest Penetration</td>
<td>3 mils</td>
</tr>
<tr>
<td>Deposit Loading</td>
<td>13 g/ft²</td>
</tr>
</tbody>
</table>
Benefits

- Measures tube scale deposit thickness with direct correlation to standard Deposit Weight Density (DWD) method using advanced UT method.
- Internal scales in furnace tubes can be measured in hundreds of points, as compared to one for standard DWD analysis.
- Tube samples are taken only when needed where needed.
- When scale growth is monitored frequently, corrective actions can be carried out in time (before corrosion risks increase).
- The impacts of water treatment become clearly visible: water treatment can be optimized so that acid cleaning interval can be extended, reducing cost.
- On-line monitoring of acid cleaning: acid treatment phase can be extended or terminated as needed. Cleaning results can be verified (vs. guarantees).
- Results can be used to replace a few “problem” tubes instead of acid cleaning entire boiler.
Technology Enhances Chemical Cleaning

Equipment can be used to monitor effectiveness of cleaning

- Minimizes potential for tube damage due to excessive cleaning
- Cleaning time is optimized to improve boiler availability
Internal Scale In Furnace Wall Tubes

Sample Tubes

Sample Scale thickness on the average ≈ 6 mils
maximum 8 – 12 mils
3 – 4 mils consider cleaning
(20-25 g/ft²) DWD
Thick scales are not detectable by endoscopy

Damaged tube
Detectable by endoscopy

Valmet
Validation Results

Scale thickness measured by advanced ultrasound technique (µm) vs. scale thickness measured by coating gauge (µm).

- Scale thickness measured by coating gauge (µm) on the x-axis.
- Scale thickness measured by advanced ultrasound technique (µm) on the y-axis.

The graph shows the data points for 20 measurements, with a difference of ±20 µm indicated by the dashed lines.

20µm = 0.8 mils
Actual Data from Inspection

Recovery Boiler 10 feet above floor

- **Left wall**
- **Front wall**
- **Back wall**
- **Right wall**

100 um = 4 mils
~ 20 g/ft²
Sample Tube Cross Section
Readings compared to actual cross section measurement

126.99 μm
175.65 μm
Inspection Results for a Recovery Boiler
Operated 26 years without acid cleaning

No change in internal scale thickness: water quality and water chemistry OK
Recovery Boiler Tube Failure (2015)

Damage caused by internal scale deposition

- During shutdown water noted flowing out smelt spouts.
- Three tubes damaged (one with leak).
- Outage length: 5 days
- The removed tubes had thick internal scale discovered. Tube temperatures were increased resulting in both internal and external corrosion.
- The boiler was later inspected. Severe scale deposition was revealed. The boiler will be acid cleaned.
Recovery Boiler Tube Failure
Reference List (39 Inspections)

Finland
- Alholmens Kraft 2010
- April Kerinci 2014
- Fortum Joensuu 2013
- Fortum Kauhtua 2011
- Fortum Nokia 2010
- Fortum Suomenoja 2011
- Iggesund Workington 2013, 2015
- Jyväskylän Energia 2011, 2015
- Järvisuomen Voima 2009
- Kainuu Voima 2012
- Kotkamills 2012
- Kotkan Energia 2012
- Laanilan Voima 2012
- Lahti Energia 2014
- Metsä Fibre Äänekoski 2010, 2013
- M-real Kaskinen 2011
- Oulun Energia 2014
- Stora Enso Oulu 2010, 2014
- Stora Enso Varkaus 2014
- Tervakoski 2011
- UPM Kymi 2013
- UPM Tervasaari 2014
- UPM Wisa 2014
- Vantaan Energia 2014

North America
- MWV, Covington, VA 2015, PB9
Summary

Successful program

The best results are achieved when inspections are made at regular intervals so that fast deposit growth rates can be detected at an early stage.

Value

Method would provide more data to support chemical cleaning strategy. Mills could extend their chemical clean cycle and/or this technology could be used to determine where best to take a tube sample—or not take a tube sample and instead rely on this technology.

To draw a direct correlation to DWD would require deposit analysis, so at least one sample is recommended. Then shift to annual (or greater) deposit UT method.